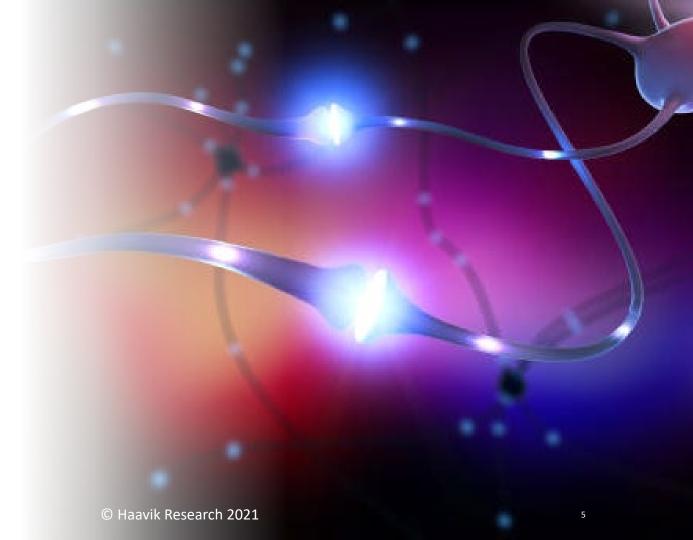


Content

- The role of the brain in pain perception
- Pain is created in the brain
- Neural plasticity
- Chronic pain
- The sensory system
- Pain is our alarm system

We are hardwired for survival and the brain is constantly sensing what is happening in our environment to check for danger.



The brain may even block pain signals if the feeling of pain would be detrimental to our survival.

The brain is essential in keeping us healthy and functioning.

PAIN PERCEPTION

The brain decides if you should feel pain if there is tissue damage or even a potential threat of tissue damage.

Pain is usually helpful and informative, but in some situations the pain can spread to areas where there is no tissue damage. The brain can learn to be in pain; this is an example of neural plasticity.

Chiropractic adjustments can change brain function; the area of the brain that can change is the pre-frontal cortex. This part of the brain plays a large role in pain control.

Chiropractic adjustments can help turn down or shut off the feelings of pain. A chiropractor may not always adjust the area where you feel pain in your spine, but will adjust the areas that are not moving properly.

Chiropractic adjustments improve the function of your spine and the communication between your brain and body so your brain can more accurately sense what is happening in your body.

- Our brain is constantly taking in information from our internal and external environment.
- The brain creates new connections, strengthens connections or prunes off connections based on the information it receives.

Adaptive neural plasticity - changes in our brain that are beneficial.

Chiropractic adjustments allow the brain to more accurately sense what is happening in the spine and body and create neural plastic changes^{1,3,4}

Pain is normal and usually helpful and informative, but chronic pain is pain that is no longer protective or informative.

Pain is created in the brain and you can retrain your brain out of chronic pain.

Staying active is an important thing you can do to retrain your brain, but if you can't do some movements due to the pain, even imagining movements is beneficial for the brain.

Keeping your spine moving and healthy is also very important to help reduce chronic pain; this can be with yoga or with chiropractic adjustments.

Chiropractic care helps your brain to more accurately know what is happening in your body and may help your brain to switch off the feelings of pain when they are no longer needed.

The sensory system is essential for life.

There are millions of tiny sensors all around the body that each play a different 'tune', that is give different sensory information. If the brain receives messages from these sensors in a particular pattern the brain may decide for you to feel pain to alert you to danger.

The pre-frontal cortex is an area of your brain that acts like the conductor of an orchestra and plays a big role in pain perception. It is known to be affected by spinal function and show changes following chiropractic adjustments.

Nerve cells talk to each other through connections called synapses; if the pain tune is playing then this can affect many different systems in your body through these connections. The brain can learn to be in pain if we pay a lot of attention to this pain tune.

The alert and danger system (sympathetic nervous system) and the calm and healing system (parasympathetic nervous system) play big roles in pain. The alert and danger system is activated when we feel pain and adrenaline is pumped around our body to make sure we can run away if we need to. If you are in chronic pain this can mean you are in a constant state of high adrenaline and alertness.

The alert and danger system also keeps our large muscle groups primed for action and switches off the smaller muscle groups, such as those attached to our spine. This can mean over time those big muscles get stiff and tired²⁸ and the small muscles stop sending important signals to the brain about our spinal movement and function.

Chiropractic care can help with pain as it activates the small muscles attached to the spine, turns down the pain tune in the brain and impacts the pre-frontal cortex, changing the pain music in the brain.

• Our brain is constantly assessing sensory input from our body and the world around us to look out for signs of threat or danger. Pain is a signal the brain creates to alert us of problems and is helpful and informative.

• Pain is created in the brain. The brain may create the feeling of pain even if it only thinks there is a potential threat of tissue damage.

• Sensory messages from the body can create a pain 'tune' in the brain. Sometimes the brain can get stuck on this 'tune' and learn to be in pain. This can create chronic pain.

• Neural plasticity is changes or adaptation in the brain based on information from our internal and external environment. Chiropractic adjustments have a neural plastic effect on the brain.

• Pain is our alarm system and will activate the alert and danger (sympathetic) part of our nervous system. Chronic pain can cause people to be stuck in this alert and danger system and cause further problems in the brain and body.

• You can help to retrain your brain out of chronic pain by keeping active, eating well and keeping your spine healthy through chiropractic care.

• Chiropractic adjustments are known to decrease pain; this is thought to be because they switch off or turn down the feeling of pain in the brain.

Share the message!

- Heidi Haavik, Nitika Kumari, Kelly Holt, Imran Khan Niazi, Imran Amjad, Amit N. Pujari, Kemal Sitki Türker, Bernadette Murphy. (2021) The contemporary model of vertebral column joint dysfunction and impact of high-velocity, low-amplitude controlled vertebral thrusts on neuromuscular function" Invited Review. European Journal of Applied Physiology. https://doi.org/10.1007/s00421-021-04727-z
- Heidi Haavik, Imran Khan Niazi, Nitika Kumari, Imran Amjad, Jenna Duehr, Kelly Holt. (2021)
 Chiropractic care and the neuroimmune response: A narrative review. Medicina 2021, 57, 536.
 https://doi.org10.3390/medicina57060536
- Haavik H, Murphy B. The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J Electromyogr Kinesiol 2012;22(5):768-76.
- Lelic D, Niazi IK, Holt K, et al. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study. Neural plasticity 2016;2016:3704964.
- Haavik H, Murphy B. Subclinical neck pain and the effects of cervical manipulation on elbow joint position sense. J Manipulative Physiol Ther 2011;34(2):88-97.
- Holt KR, Haavik H, Lee AC, et al. Effectiveness of Chiropractic Care to Improve Sensorimotor Function Associated With Falls Risk in Older People: A Randomized Controlled Trial. J Manipulative Physiol Ther 2016.

- Haavik H, Murphy B. Subclinical neck pain and the effects of cervical manipulation on elbow joint position sense. Journal of Manipulative & Physiological Therapeutics 2011;34:88-97.
- Haavik Taylor H, Murphy B. Altered cortical integration of dual somatosensory input following the cessation of a 20 minute period of repetitive muscle activity. Exp Brain Res 2007;178(4):488-98.
- Haavik Taylor H, Holt K, Murphy B. Exploring the neuromodulatory effects of the vertebral subluxation and chiropractic care. Chiropr J Aust 2010;40(1):37-44.
- Shaw L, Descarreaux M, Bryans R, et al. A systematic review of chiropractic management of adults with Whiplash-Associated Disorders: recommendations for advancing evidence-based practice and research. Work 2010;35(3):369-94.
- Hannibal KE, Bishop MD. Chronic Stress, Cortisol Dysfunction, and Pain: A
 Psychoneuroendocrine Rationale for Stress Management in Pain Rehabilitation.
 Physical Therapy. 2014;94(12):1816-1825.
- Melzack R. From the gate to the neuromatrix. Pain. 1999;82:S121-S126.
- Apkarian AV, Hashmi JA, Baliki MN. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain. 2011;152(3 Suppl):S49.

- Swieboda P, Filip R, Prystupa A, et al. Assessment of pain: types, mechanism and treatment. Ann Agric Environ Med 2013; Spec no. 1:2-7.
- Bannister K, Kucharczyk M, Dickenson AH. Hopes for the Future of Pain Control. Pain and therapy 2017.
- Bonakdar RA. Integrative Pain Management. Med Clin North Am 2017;101(5):987-1004.
- Kocur P, Pospieszna B, Choszczewski D, et al. The effects of Nordic Walking training on selected upper-body muscle groups in female-office workers: A randomized trial. Work 2017;56(2):277-83.
- O'Connor SR, Tully MA, Ryan B, et al. Walking exercise for chronic musculoskeletal pain: systematic review and meta-analysis. Arch Phys Med Rehabil 2015;**96**(4):724-34.e3.
- Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience 2017;341:61-78.
- Henderson CN. The basis for spinal manipulation: Chiropractic perspective of indications and theory. J Electromyogr Kinesiol 2012.
- Walker BF, French SD, Grant W, et al. A Cochrane review of combined chiropractic interventions for low-back pain. Spine (Phila Pa 1976) 2011;36(3):230-42.
- Bryans R, Decina P, Descarreaux M, et al. Evidence-based guidelines for the chiropractic treatment of adults with neck pain. J Manipulative Physiol Ther 2014;**37**(1):42-63.

- Bryans R, Descarreaux M, Duranleau M, et al. Evidence-based guidelines for the chiropractic treatment of adults with headache. J Manipulative Physiol Ther 2011;34(5):274-89..
- Kane MJ, Engle RW. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective.
 Psychonomic Bulletin & Review. 2002;9(4):637-671.
- Rossi AF, Pessoa L, Desimone R, Ungerleider LG. The prefrontal cortex and the executive control of attention. 2009;192(3):489-497.
- Fenton BW, Shih E, Zolton J. The neurobiology of pain perception in normal and persistent pain. *Pain Manag.* 2015;5(4):297-317.
- Seminowicz DA, Moayedi M. The Dorsolateral Prefrontal Cortex in Acute and Chronic Pain. *The Journal of Pain*. 2017/09/01/ 2017;18(9):1027-1035.
- Makary MA, Daniel M. Medical error-the third leading cause of death in the US. Bmj 2016;353:i2139.
- Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. 2010;7(4):338-353.
- Mitsi V, Zachariou V. Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience. 2016;338:81-92.

© Haavik Research 2021

- Sjøogaard G, Lundberg U, Kadefors R. The role of muscle activity and mental load in the development of pain and degenerative processes at the muscle cell level during computer work. European Journal of Applied Physiology. 2000;83(2-3):99-105.
- Pickar JG, Wheeler JD. Response of muscle proprioceptors to spinal manipulative-like loads in the anesthetized cat. *Journal of Manipulative and Physiological Therapeutics*. 2001/01/01/2001;24(1):2-11.
- Boyd-Clark LC, Briggs CA, Galea MP. Muscle Spindle Distribution, Morphology, and Density in Longus Colli and Multifidus Muscles of the Cervical Spine. Spine. 2002;27(7):694-701.
- Bronfort G, Haas M, Evans RL, et al. Efficacy of spinal manipulation and mobilization for low back pain and neck pain: a systematic review and best evidence synthesis. Spine Journal: Official Journal of the North American Spine Society 2004;**4**(3):335-56.
- Bryans R, Decina P, Descarreaux M, et al. Evidence-based guidelines for the chiropractic treatment of adults with neck pain. *J Manipulative Physiol Ther.* Jan 2014;37(1):42-63.
- Goertz CM, Pohlman KA, Vining RD, Brantingham JW, Long CR. Patient-centered outcomes of high-velocity, low-amplitude spinal manipulation for low back pain: a systematic review. *J Electromyogr Kinesiol*. Oct 2012;22(5):670-691.
- Ruddock JK, Sallis H, Ness A, Perry RE. Spinal Manipulation Vs Sham Manipulation for Nonspecific Low Back Pain: A Systematic Review and Meta-analysis. *J Chiropr Med.* Sep 2016;15(3):165-183.

© Haavik Research 2021

- Bryans R, Descarreaux M, Duranleau M, et al. Evidence-based guidelines for the chiropractic treatment of adults with headache. *J Manipulative Physiol Ther*. Jun 2011;34(5):274-289.
- Butler D, Moseley GL. Explain Pain. Adelaide, Australia: Noigroup Publications; 2003.
- Sherzai AZ, Elkind MS. Advances in stroke prevention. Ann N Y Acad Sci 2015;1338:1-15.
- Clarke DJ, Forster A. Improving post-stroke recovery: the role of the multidisciplinary health care team. J Multidiscip Healthc 2015;8:433-42.
- Chen JC, Shaw FZ. Progress in sensorimotor rehabilitative physical therapy programs for stroke patients. World J Clin Cases 2014;**2**(8):316-26.
- Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, et al. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabilitation and neural repair 2017;**31**(2):107-21.
- Greisberger A, Aviv H, Garbade SF, et al. Clinical relevance of the effects of reach-to-grasp training using trunk restraint in individuals with hemiparesis poststroke: A systematic review. J Rehabil Med 2016;48(5):405-16.
- Wist S, Clivaz J, Sattelmayer M. Muscle strengthening for hemiparesis after stroke: A metaanalysis. Annals of physical and rehabilitation medicine 2016;**59**(2):114-24.
- Gross A, Miller J, D'Sylva J, et al. Manipulation or mobilisation for neck pain: a Cochrane Review. *Man Ther.* Aug 2010;15(4):315-333.