

Heidi's Platinum RoundTable

Dec 2025

Heidi Haavik BSc (chiropractic), PhD
VP Research, Dean Research
New Zealand College of Chiropractic

1

Welcome to New Platinum Members!!

- Online Classes for DCs and CAs
- Live Zoom Workshops every 8 weeks
- Level 1 The Brain Model
- Level 2 Pain, the Brain and Chiropractic care
- Level 3 Stress, Disease and Chiropractic care

- Your resources:

- Chiroshub – for patients [chiroshub](https://www.chiroshub.com)
- ChiroAcademy – for chiro [ChiroAcademy.com](https://www.chiroacademy.com)
- LearningHub – for CAs [LearningHub](https://www.learninghub.com)

2

1

Platinum Member on Chiroshub

- The Platinum Member also has a dedicated platinum member site on Chiroshub.com
- Next life workshop countdown
- Question for Heidi
- Next workshop link
- Prefrontal cortex poster
- Cerebellum poster

Welcome David

Platinum Members

DC Class Page
CA Class Page
Ask Heidi a Question

Member Resources

Member Dashboard
FREE Resources

Workshop Dates

Workshop: Wed December 11 8am NZT
February 13, 2025
June 20, 2025
August 14, 2025
October 26, 2025
December 11, 2025

Support

View Your Account
Change your Password
Contact Support

Search ...

ENLIGHTENING THE WORLD ABOUT THE SCIENCE OF CHIROPRACTIC

Next Workshop – Dec 11, 2024 08:00 AM NZT

The next workshop is on December 11. We will try and alter the times for these to suit the many different time zones they are for practices.

00 DAYS 15 HRS 20 MINS 27 SECS

Have a question for Heidi?

Ask Heidi a Question

<https://us06web.zoom.us/j/89014427361>

Open Zoom Workshop

Google Calendar
Outlook Calendar

3

Outline

- <https://chiroacademy.com/the-new-brain-model-2024/>

Dec 2024 Topic
How I present this latest science to other health care providers

Feb 2025 Topic
How I present this latest science to the lay public

April 2025 Topic is how to explain the chiro-neuro-immune connection according to the brain model

June 2025 How, according to brain model, can chiro care impact organ function

Aug 2025 How, according to brain model, can chiro care impact anxiety & depression

Oct 2025 Chiropractic and Sports Performance

ChiroAcademy

Home About Classes FAQ Contact Unlimited Access Login

Heidi Haaviks Online Course

THE NEW BRAIN MODEL OF CHIROPRACTIC CARE

Welcome to this online course on using chiropractic science to improve performance, strength, and function. I will teach you how to use the Brain Model of Chiropractic Care.

Thank you for taking on this challenge. This will be a unique opportunity for you and your team to master the Brain Model of Chiropractic, develop your confidence in communicating the science of chiropractic, and grow the practice of your dreams. We hope you enjoy this course and would love to hear how you go. At any time, please feel free to email us at support@chiroshub.com.

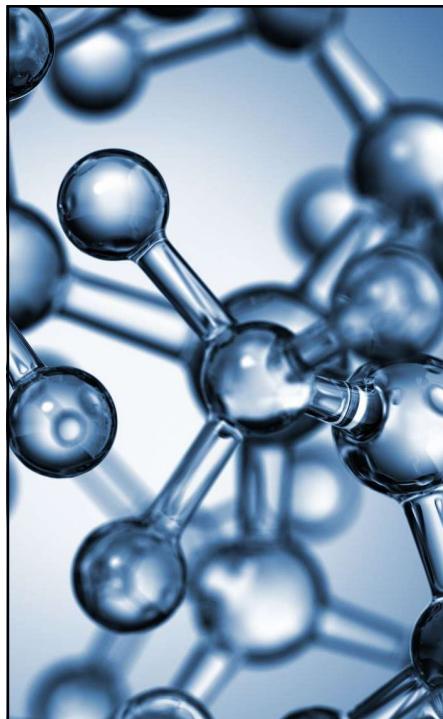
View Zoom Workshops

← Recorded Live Zoom Sessions

4

Outline Level 1

ALL ONLINE



- 20 Steps for chiros
 - <https://chiroacademy.com/the-new-brain-model-2024/>
- 13 Steps for CAs
 - <https://chirolearninghub.com/enlighten-practice-members-2024/>

Plus LIVE DC workshops roughly every second months

- covers live Q&A plus a topic

5

Today's Topic: A hot-off-the-press update on the Chiropractic and Immune Connection

February: How might chiropractic care enhance sports performance?

April: Does chiropractic care prevent sports injuries, and if so how can it do this?

These workshops will also be recorded and appear on your ChiroHub membership page and on the course outline page along with the handout and PowerPoints if you want them.

6

Chiropractic Assistants

<https://chirolearninghub.com/enlighten-practice-members-2024/>

<https://chirolearninghub.com/platinum-level-1>

- 14 online classes for CAs
- Happy to book a practice CA live zoom session also
- Reward your staff for their effort!!!
 - Voucher
 - Pay rise

Heidi Haavik's Online Course

Welcome to this online course to Improve Performance, Strength and Function with Chiropractic Communication.

This online course provides practical knowledge about the latest information about the importance of good spinal function. This should help you answer common questions from your practice members (patients). This course is also designed to help you take advantage of several online resources your chiropractor's practice has access to, which will help enlighten your practice members about the many scientifically proven benefits of chiropractic care.

Thank you for accepting this challenge. We hope you enjoy this course and would love to hear how you go. At any time, please feel free to email us at support@chiroshub.com.

7

Any Questions Regarding Membership?

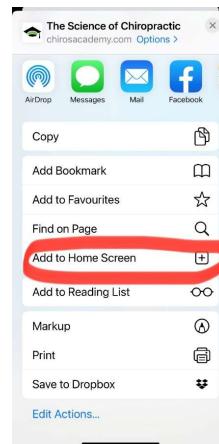
Dave Woodard

support@chiroshub.com

8

4

1


On your smart phone click on Safari and type in ChiroAcademy.com

2

Click on the up arrow

3

Click on 'Add to Home Screen'

4

ChiroAcademy will now appear as an App on your phone!

9

Continuing Education

Home | Login | Create an Account

All | Live | Online

Courses and Programs

Haavik

Course Title	Author	Category	Length	Price
Care Plans, Maintaining Balance and Managing Risk in Detecting Subluxations	Heidi Haavik, B.Sc., Ph.D.	Chiropractic Care and Developmental Milestones, CP, ADID, and Autism	1 HOUR CLASS	\$24.00
Introduction to How Chiropractic Care Can Change the Brain	Heidi Haavik, B.Sc., Ph.D.	Chiropractic Care for Older Adults and Hypertension	1 HOUR CLASS	\$24.00
Introduction to the Neuophysiology of Chiropractic Subluxations	Heidi Haavik, B.Sc., Ph.D.	Evidence Based Practice	1 HOUR CLASS	\$24.00
Science Gems: Part 1	Heidi Haavik, B.Sc., Ph.D.		1 HOUR CLASS	\$48.00
Science Gems: Part 2	Heidi Haavik, B.Sc., Ph.D.		1 HOUR CLASS	\$48.00
Science Gems: Part 3	Heidi Haavik, B.Sc., Ph.D.		1 HOUR CLASS	\$24.00
Science Gems: Part 4	Heidi Haavik, B.Sc., Ph.D.		1 HOUR CLASS	\$24.00
The Profound Cortex: Implications for the Chiropractor	Heidi Haavik, B.Sc., Ph.D.	Somatosensory Dysfunction and Heart Rate Variability	1 HOUR CLASS	\$24.00
The Somatosensory Neuropathic Effects of Chiropractic Care and What the Research Says About a Mechanism	Heidi Haavik, B.Sc., Ph.D.	The Brain, Pain, and the Neuropathic Effects of Chiropractic Care	1 HOUR CLASS	\$120.00
The Spine Dysfunction and Consequences of Spinal Injury	Heidi Haavik, B.Sc., Ph.D.		1 HOUR CLASS	\$24.00

If anyone requires USA CE credits

- Go to Palmer College Continuing Education Online Courses

- <https://palmerce.learningexpressce.com/index.cfm?eventTypeID=0&categoryIDs=&q=Haavik>

10

PALMER
College of Chiropractic
Continuing Education

Home Login Create an Account

Care Plans, Maintenance Care, and Reliability of Methods for Detecting Subluxations

Cost: \$24.00 Take This Course

In this one-hour course, Dr. Heidi Haavik will examine the evidence for chiropractic care plans and maintenance care different ways chiropractors test for subluxations and the evidence pertaining to reliability of those methods.

State Approvals

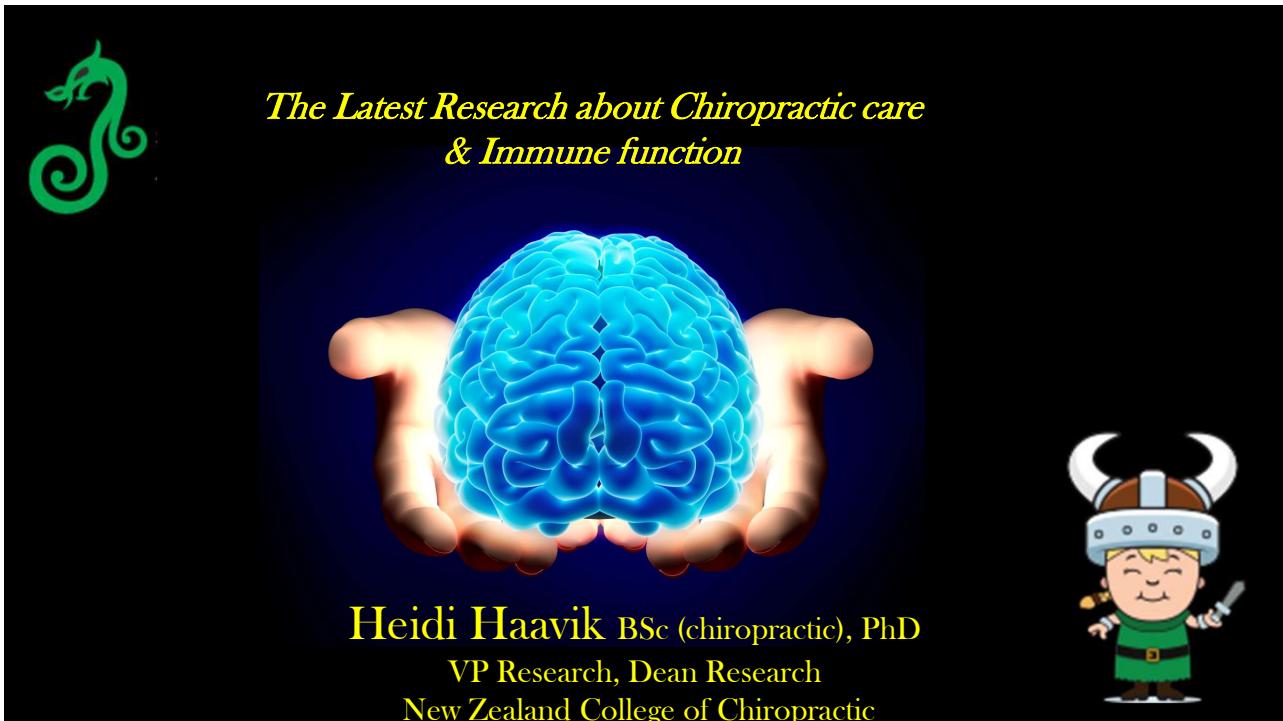
Alaska, Arizona, California, Colorado, Connecticut, District of Columbia, Florida, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Maine, Maryland, Massachusetts, Michigan, Minnesota, Montana, Nebraska, New Hampshire, New Jersey, North Carolina, North Dakota, Ohio, Oregon, Puerto Rico, Rhode Island, South Carolina, South Dakota, Tennessee, Utah, Vermont, Virgin Islands, Virginia, Washington, Wyoming

+ Module 1
+ Module 2
+ Module 3
+ Module 4
+ Module 5
+ Module 6
+ Course Completion
+ Course Information

Purchase Now

Copyright © 2024 Palmer College of Chiropractic. All Rights Reserved. About Us | Privacy Policy | Terms of Service

Check here for
which states have
approved each
class


11

Questions

12

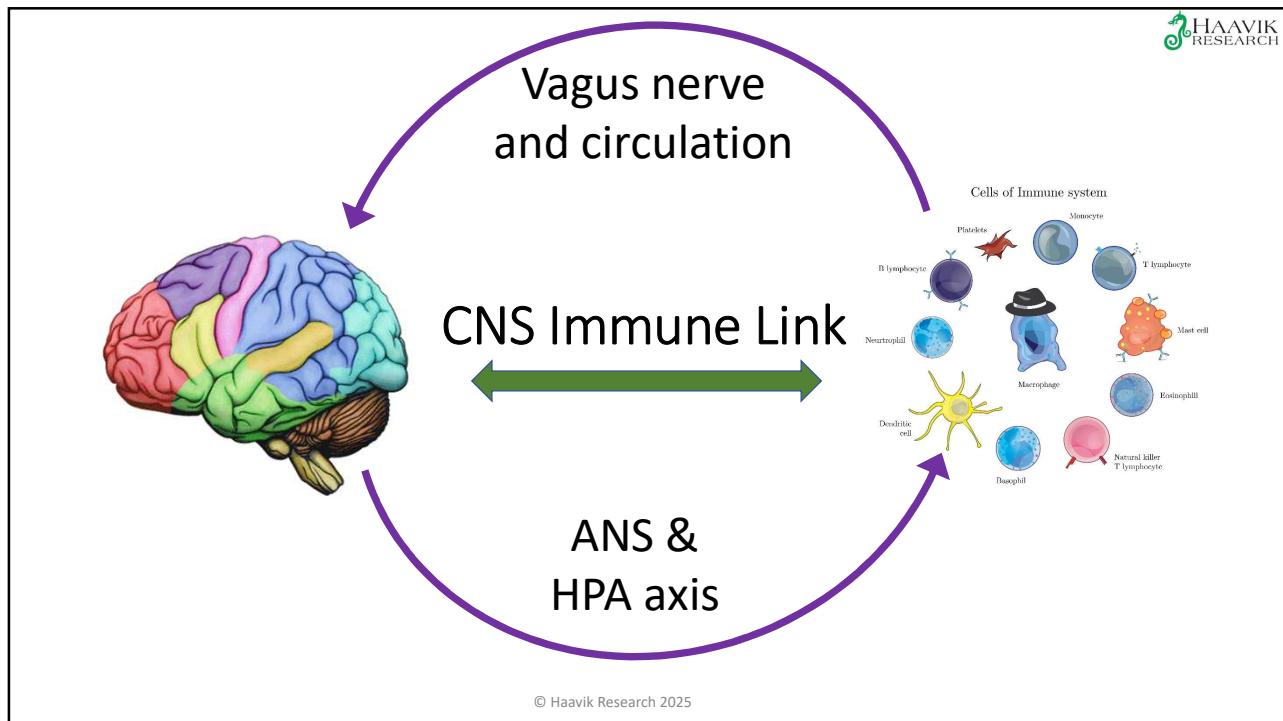
13

Key Reference

Heidi Haavik, Imran Khan Niazi, Nitika Kumari, Imran Amjad, Jenna Duehr, Kelly Holt. (2021b) The potential mechanisms of High-Velocity, Low-Amplitude, Controlled Vertebral Thrusts on Neuroimmune Function: A narrative review. *Medicina* 2021, 57, 536.

<https://doi.org/10.3390/medicina57060536>

Imran Amjad, Imran Khan Niazi, Nitika Kumari, Usman Ghani, Usman Rashid, Felipe Duarte, Federico For-tuna, Diego Gonzalez, Alex Sumich, Bibiana Fabre, Kelly Holt, Heidi Haavik. The effects of 12 weeks of chiropractic spinal adjustments on Physiological biomarkers in adults: A pragmatic randomized controlled trial. *PLOS ONE*. Accepted for publication Nov 2025 5-year impact factor of 3.2

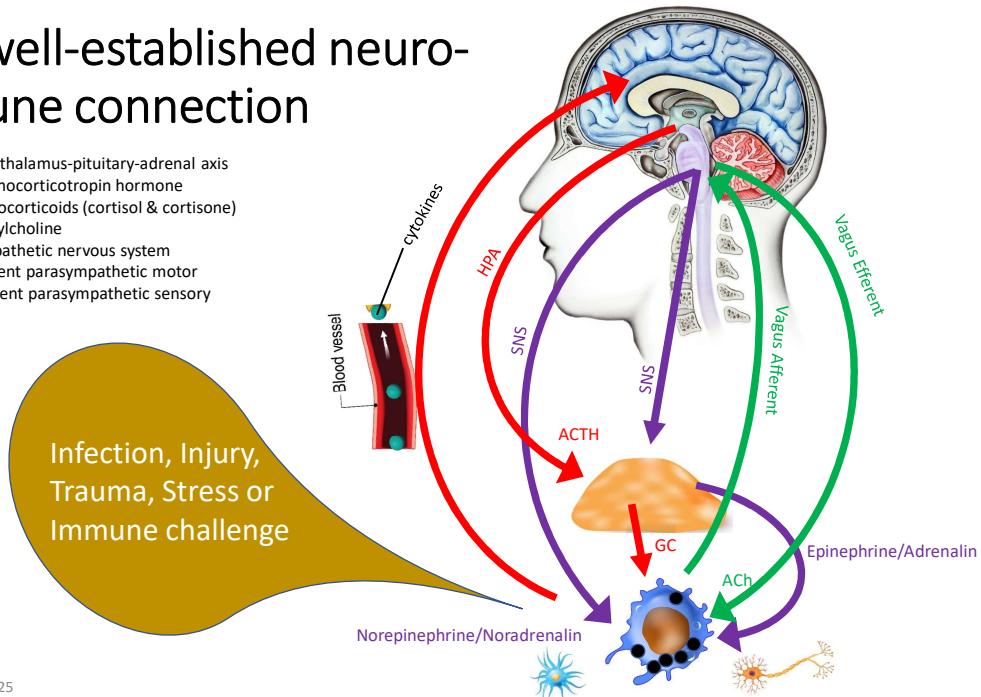

Check out
the April
2025
Platinum
RoundTable
talk

It is recorded and covers the background information!

Today I will recap briefly what I covered in April and then

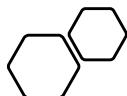
Cover our latest publication – accepted for publication a few days ago

15



16

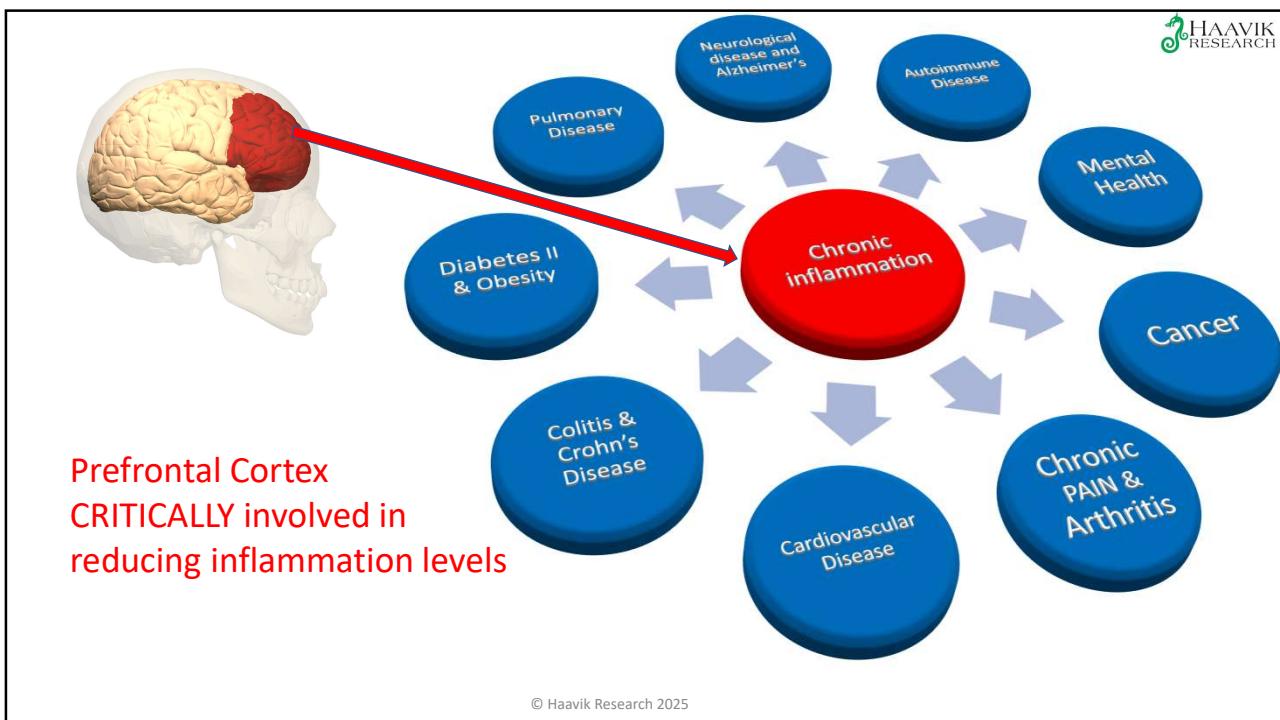
The well-established neuro-immune connection



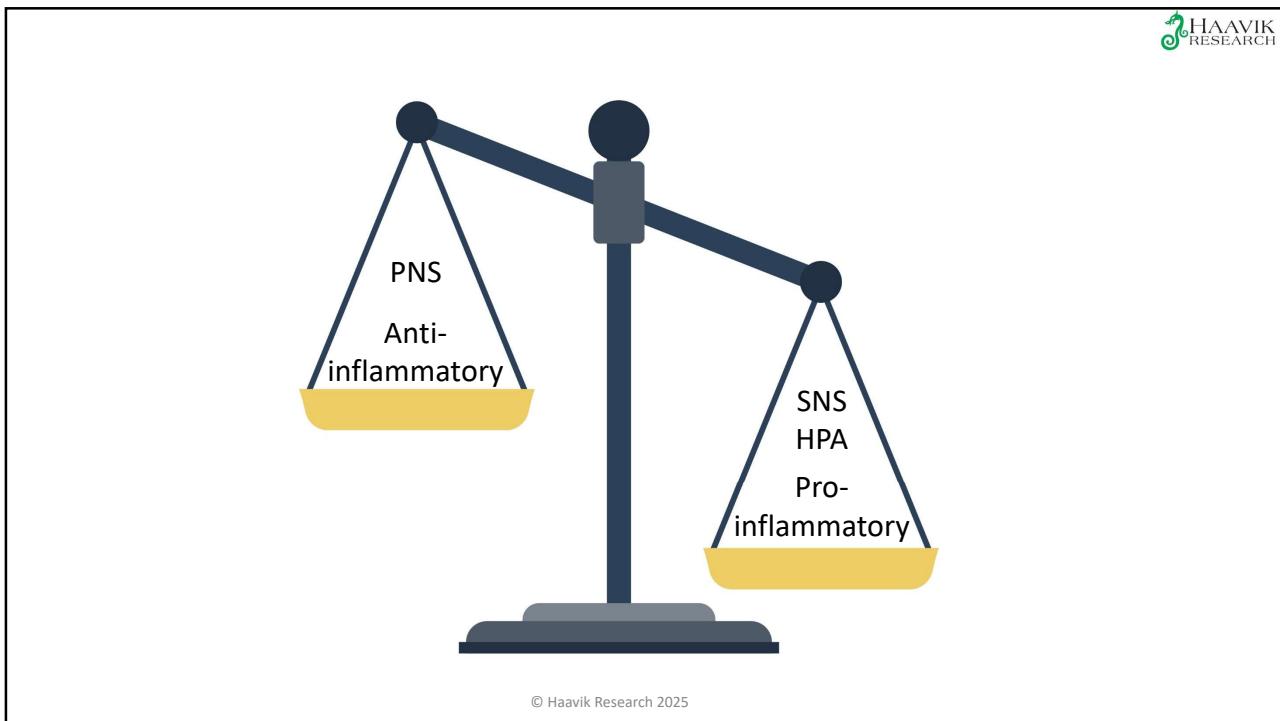
HPA	hypothalamus-pituitary-adrenal axis
ACTH	adrenocorticotropin hormone
GC	glucocorticoids (cortisol & cortisone)
Ach	Acetylcholine
SNS	sympathetic nervous system
Vagus	Efferent parasympathetic motor
Vagus	Afferent parasympathetic sensory

© Haavik Research 2025

17

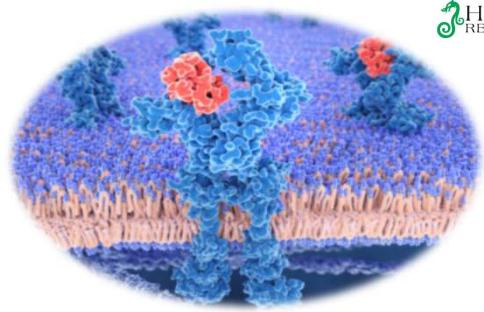


- Reduces Immunity
- Activates SNS
- Activates HPA
- Shuts down prefrontal cortex function
- Increased levels of cortisol, adrenaline/epinephrine and noradrenaline/norepinephrine
- Higher inflammation



© Haavik Research 2025

18


19

20

Summary

- CNS – Immune Closely linked
- Bi-directional communication
- Rely on accurate perception of situation
- Appropriate / balanced response required (not too much or too little)
- Neuro-immune Cell Units around the body perceive immune threat
- Vagus afferents and blood convey inflammation levels to the brain
- Brain modulates immune response via HPA and ANS by releasing glucocorticoids and catecholamines which regulate immune cell function
- Stress impairs immune response

© Haavik Research 2025

21

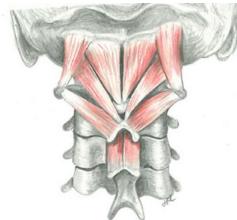
Take Home Messages

“There is substantial evidence that tells us the nervous system, the hormonal system and the immune system communicate with one another and are intimately linked in their functions. Stress affects our immune response and makes us more susceptible to infections such as respiratory diseases. And a part of the brain called the prefrontal cortex is critically involved in regulating the autonomic nervous system, the endocrine system and the immune system”.

© Haavik Research 2025

22

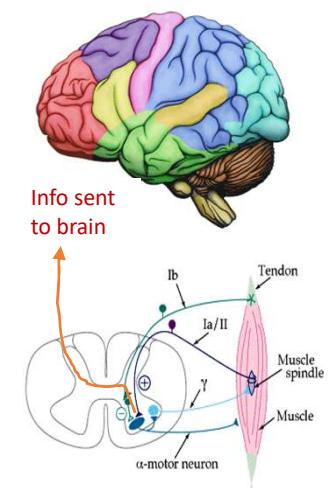
Chiropractic and the Immune System


© Haavik Research 2025

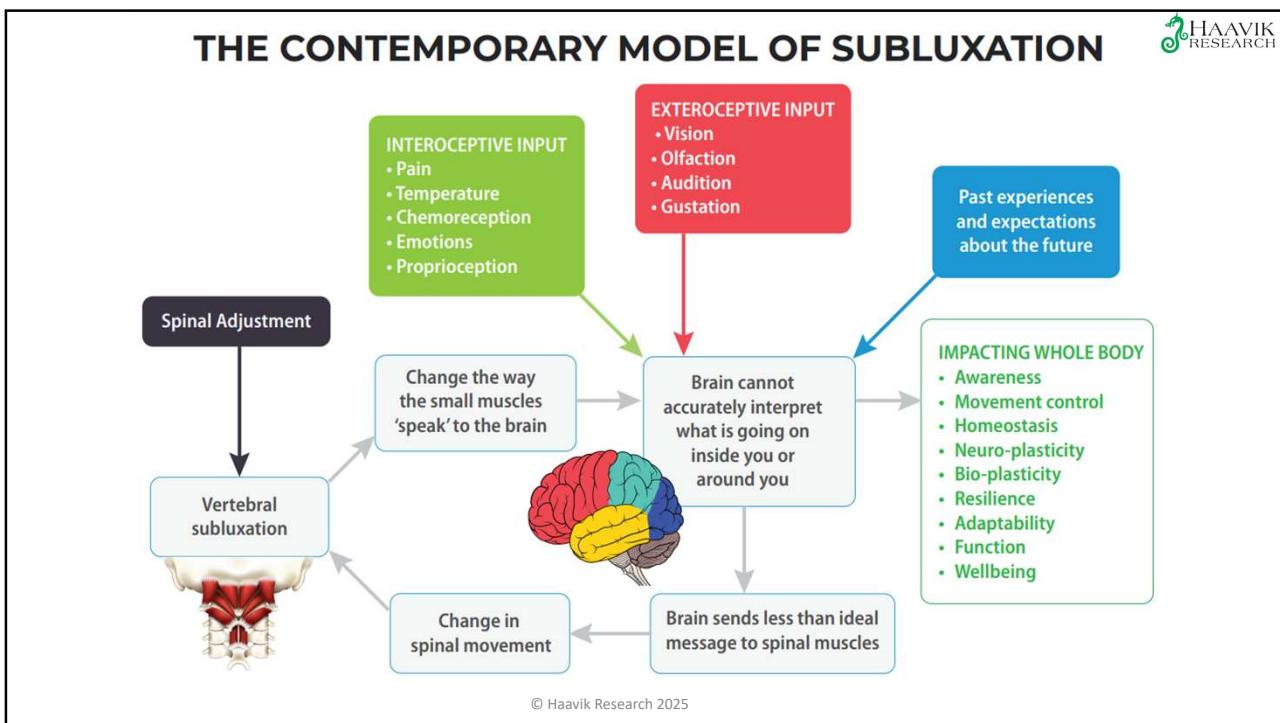
23

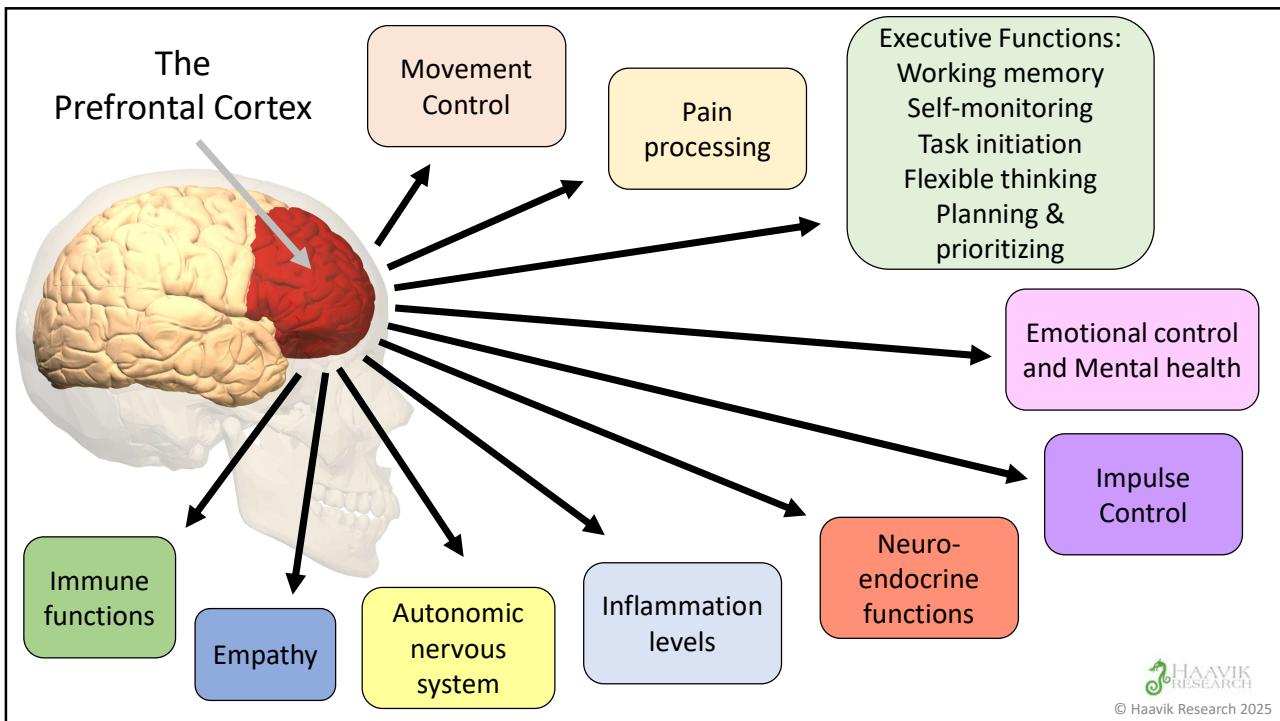
Adjustment

Stretches small muscles
closest to spine and skull

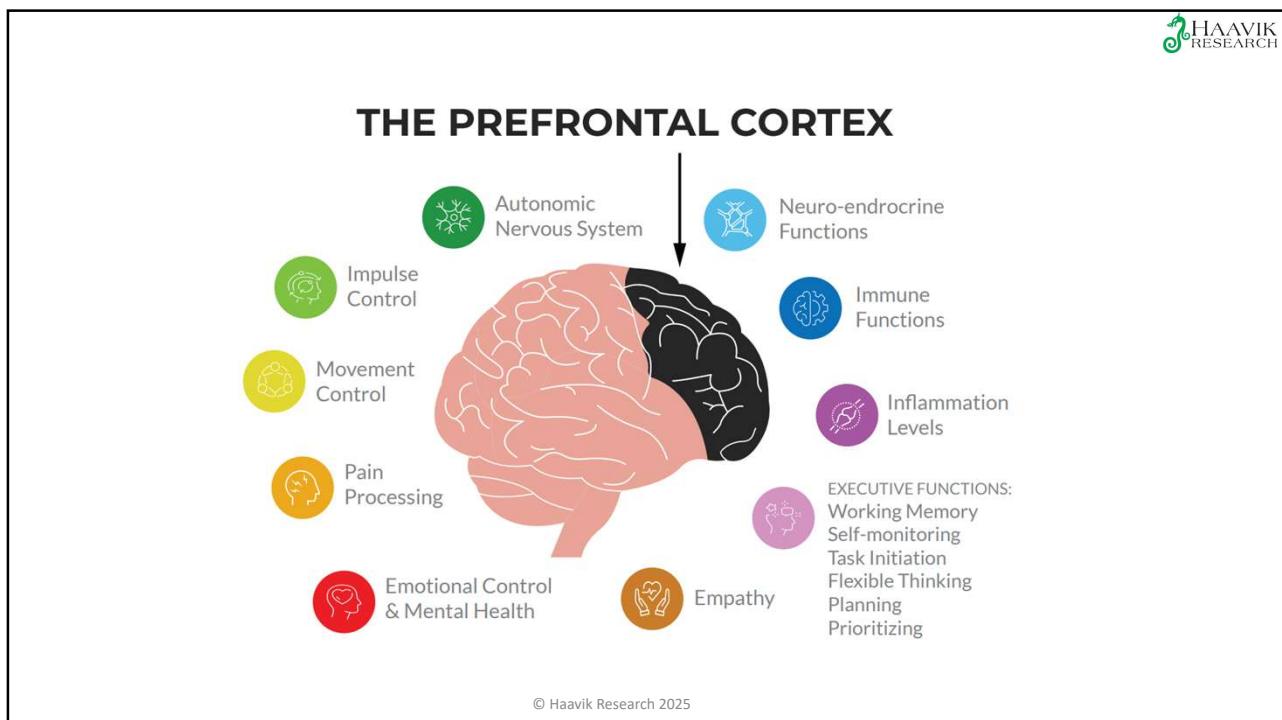

Improved body awareness
Improved body control
Improved function

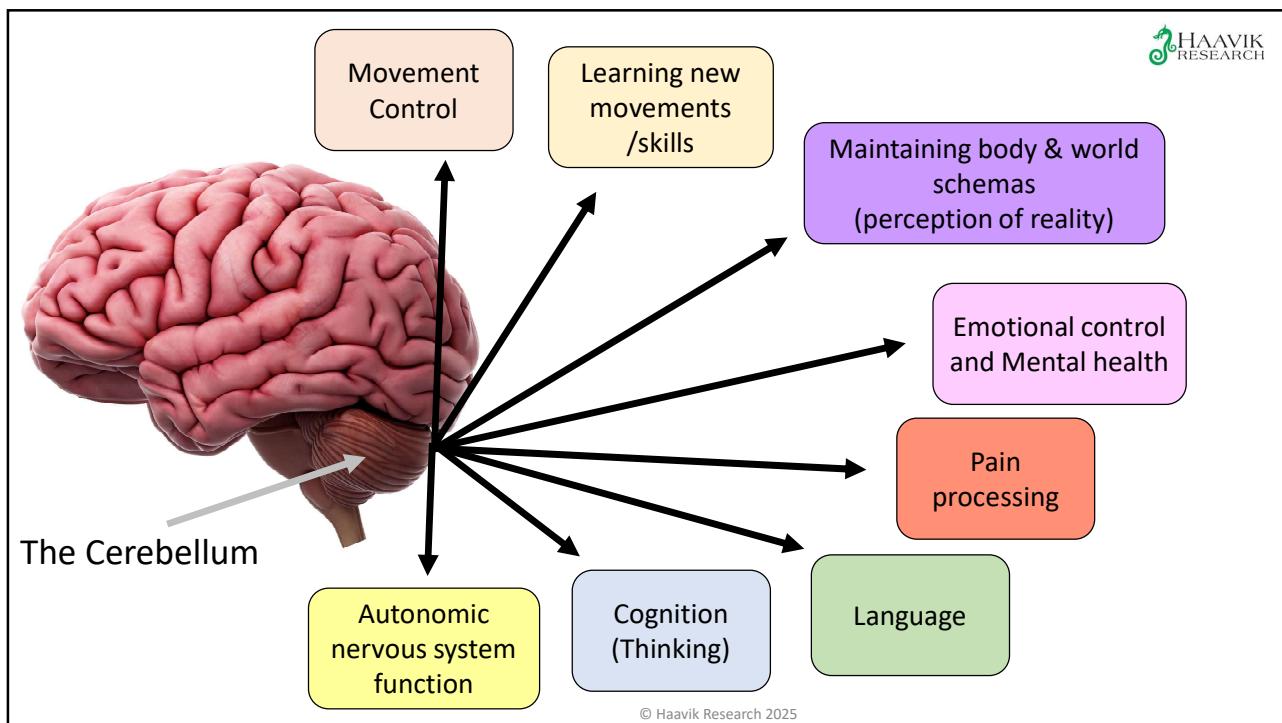
So brain knows
MORE accurately
what is going on

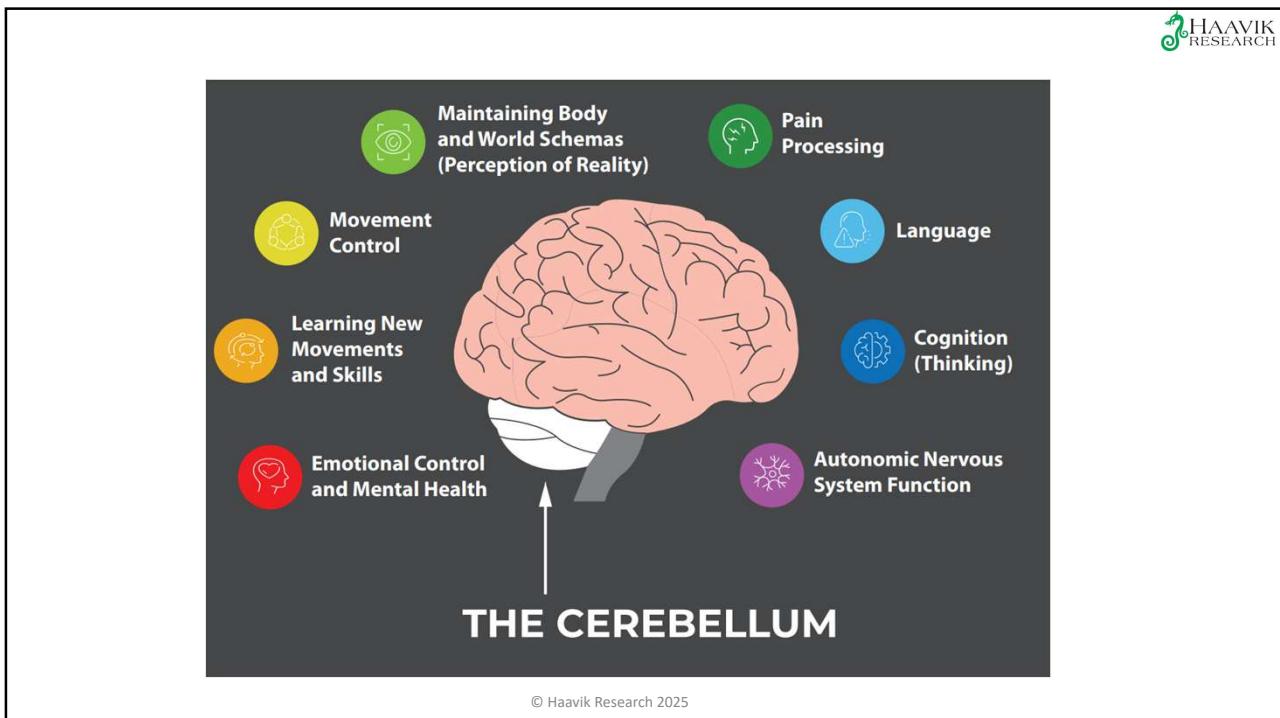

Changes brains internal
representations about
what is going on inside
and outside body


Bombs brain with
mechanoreceptor input

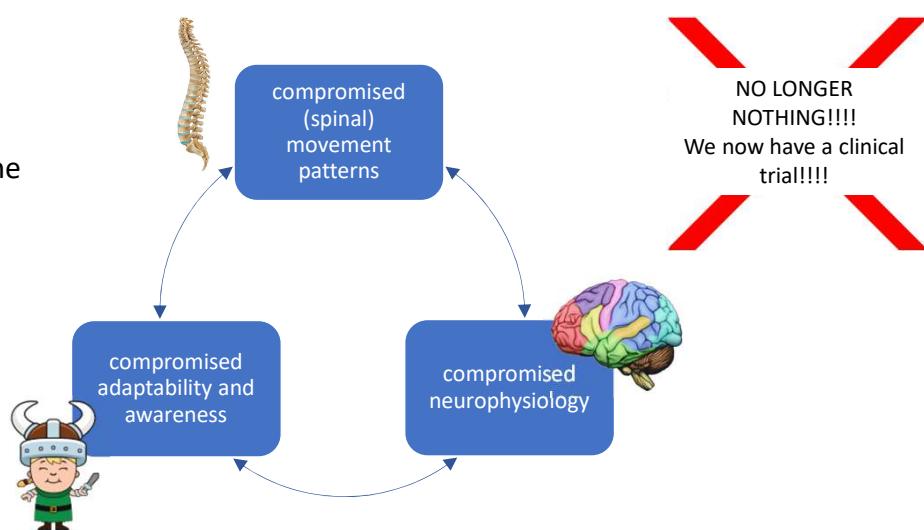
© Haavik Research 2025


24


25


26

27


28

29

The Brain Model – What evidence do we have?

Basic Science
Link chiro-neuro
Link chiro-immune

© Haavik Research 2025

 HAAVIK
RESEARCH

30

Basic Science vs Clinical Science

- Is there a link between spinal function and neural function?
- Is there a link between spinal function and immune function?
- Can an adjustment impact neural function?
- Can an adjustment impact immune function?

- Can chiropractic care improve immune function by reducing susceptibility to getting sick
- Can chiropractic care improve immune function by improving outcomes if you do get sick (reduced symptoms, shorter recovery times, etc)

© Haavik Research 2021

31

Conclusion

“spinal manipulation can increase substance-p, neurotensin, oxytocin and interleukin levels and may influence cortisol levels post-intervention”

“more research needs to be done to understand the clinical relevance of such changes”

Musculoskeletal Science and Practice 29 (2017) 530–535

Contents lists available at ScienceDirect

Musculoskeletal Science and Practice

Journal homepage: <https://www.journals.elsevier.com/musculoskeletal-science-and-practice>
 ISSN 1474-0346

Review article

Changes in biochemical markers following spinal manipulation—a systematic review and meta-analysis

Kesava Konarapu Sampath, M.Ost¹, Ranatunga Mani, PhD², Jim Cotter, PhD³,
 Angela Sampath Gasselum, PT⁴, Steve Tumilty, PhD⁵

¹Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand

²Centre for Health, Activity, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand

³Centre for Health

⁴Centre for Health

⁵Centre for Health

ARTICLE INFO

Article history:

Received 10 December 2016

Received in revised form 12 March 2017

Accepted 4 April 2017

Keywords:

Spinal manipulation

Paracetamol

Salicylates

Homoeostasis

ABSTRACT

The aim of this meta-analysis was to determine the effectiveness of spinal manipulation in influencing various biochemical markers in healthy and in symptomatic populations. Electronic databases (n = 107) were searched (from inception to September 2016) for relevant studies. A random effects model was used to pool the data and heterogeneity was assessed. Subgroup analysis was conducted and the risk of bias was assessed. Standardized mean differences for each marker were calculated and 95% confidence intervals were used to represent the quality of the body of evidence for each marker.

There was moderate quality evidence that spinal manipulation influenced biochemical markers. There was no evidence that spinal manipulation influenced serum C-reactive protein (CRP) levels (MD = 0.00 mg/L, 95% CI: -0.83 to 0.83) or that control to eliciting changes in serum CRP levels after intervention. There was also a low quality evidence that spinal manipulation is better than no treatment (MD = -1.00 mg/L, 95% CI: -1.00 to -0.98) and better than paracetamol (MD = -1.00 mg/L, 95% CI: -1.00 to -1.04) and aspirin levels (MD = -24.03/52.33 mg/L, 95% CI: -71.2 to 117.27). However, low quality evidence indicated that spinal manipulation is not better than ibuprofen (MD = -0.50 mg/L, 95% CI: -1.00 to 0.00).

The results of this study found that spinal manipulation can induce changes in numerous markers and influence control levels post-intervention. However, future trials targeting symptomatic populations are required to understand the effects of spinal manipulation on these markers. © 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Spinal manipulation (SM) is a specific hands-on approach used by several different therapeutic professions such as physiotherapy, osteopathy and chiropractic, commonly to treat spinal pain (Harms-Ringdahl et al., 2012). SM is a manual therapy that involves a high velocity, low amplitude approach to back and neck disorders (Harms-Ringdahl et al., 2012). Previous studies have reported the effectiveness of SM in treating spinal pain (Carrasco et al., 2012; Gross et al., 2010). Though the exact mechanism through which SM is effective is not fully understood, it is believed that SM initiates a cascade of neurophysiological changes including

the peripheral nervous system, autonomic nervous system and the endocrine system (Harms-Ringdahl, 2009).

A key mechanism for SM is the facilitation for the perception of pain or nociception that occurs at the site of tissue injury (Borchers and Chaitow, 1987). Nociception is mediated by a range of mechanisms including the release of endorphins, the production of nociceptive impulses into the nervous system (Julian and Chaitow, 1990) and the release of endogenous analgesics or endorphines such as neuropeptides, oxytocin, substance P and enkephalins and endorphins (Aebischer and Doherty, 2000). Nociception is produced in several regions of the nervous system, including the spinal cord, brainstem, including areas (Gelman et al., 2008).

SM has been shown to induce changes in the range of 0 to 100% and also result in initiation of inflammatory process which further results in the production of numerous pro-inflammatory and inflammatory regulatory cytokines and neuropeptides (Gelman et al.,

¹ Corresponding author. E-mail address: konarapu.kesava@otago.ac.nz (K. Konarapu Sampath).

² Current address: Department of Health and Human Performance, University of Central Florida (UCF), Orlando, FL, USA.

³ Current address: University of Otago, Dunedin, New Zealand.

⁴ Current address: University of Otago, Dunedin, New Zealand.

⁵ Current address: University of Otago, Dunedin, New Zealand.

© Haavik Research 2025

Kovanur-Sampath, et al. 2017. *Musculoskeletal Science and Practice* 29: 120-131

32

Conclusion

“Although spinal manipulations seem to trigger the activation of the neuro-immuno-endocrine system, the evidence supporting a biological account for the application of HVLAT in clinical practice is mixed and conflicting.

Further research on subjects with spinal MSK conditions with larger sample sizes are needed to obtain more insights about the biological effects of spinal manipulative therapy.”

1. Introduction

Spine disorders are condition affecting an increasing number of people, and their associated direct and indirect costs have dramatically grown around the globe [1]. The 12-month incidence of neck pain ranges between 10.4% and 21.3% [2], and more than 75% of people living in Western countries experience an episode of lower back pain in their lifetime [3].

Although economic and societal systems are striving to minimize the burdens associated with the management, the health care systems have devoted billions of dollars per year to the search for effective interventions for spine pain [3]. Successful effects are made by pain management to find effective interventions, yet these musculoskeletal conditions remain the leading causes for years lived with disabilities (YLDs) in most countries and territories. The Global Burden of Disease 2016 study reports that both the prevalence and the YLDs because of low back and neck pain have increased by more than 10% over the last decade [3].

Medicina 2019, 55, 448. doi:10.3390/medicina5508448

www.mdpi.com/journal/medicina

Colombi and Testa 2019. Medicina 55(8): 448.

HOT OFF THE PRESS PUBLICATION

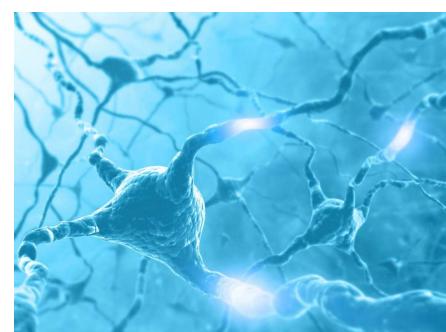
- 106 SCSP participants
- 12 weeks of chiro care
- 4 week follow up
- EEG + Lots of clinical outcomes related to PFC
 - Immune
 - Emotions
 - Sleep
 - executive functions
 - Etc

So measurements taken at baseline, at 12 weeks and at 16 weeks

Amjad, Niazi, Kumari, Ghani, Rashid, Duarte, For-tuna, Gonzalez, Sumich, Fabre, Holt & Haavik. The effects of 12 weeks of chiropractic spinal adjustments on Physiological biomarkers in adults: A pragmatic randomized controlled trial. *PLOS ONE*. Accepted for publication Nov 2025 5-year impact factor of 3.2

Study Design & Participants

- Pragmatic parallel-group RCT (Pakistan, 2022)
- Adults 20–60 with *subclinical spinal pain*
- 106 randomized → 88 completed 12 weeks → 73 completed follow-up
- **Groups:** 12 weeks chiropractic care vs sham care
- **Frequency:** ~3 sessions/week, 15–20 min each
- **Blinding:** Participants, assessors, and data analyst blinded
- **Blinding success:** 94% believed they received real chiropractic care
- **Outcomes measured at:** baseline, 12 weeks, 16-week follow-up


Amjad et al 2025 *PLOS ONE*

© Haavik Research 2025

35

Interventions & Biomarker Measures

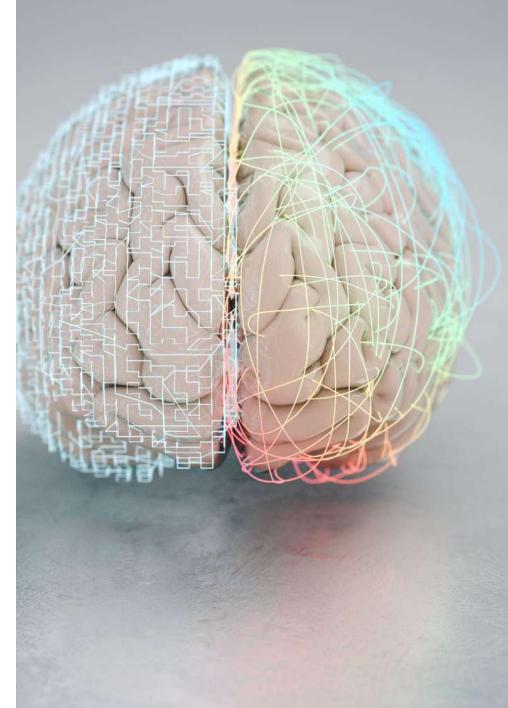
- **Chiropractic care:** 12 weeks of adjusting vertebral subluxations
- **Sham care:** identical setup, positioning, and clicks with an activator — but *no thrusts* delivered
- **Primary outcome:** Blood BDNF
- **Secondary outcomes:**
Cortisol: saliva, blood, hair
Cytokines: IL-6, TNF- α , IFN- γ , CRP
Immune cells: CD4, CD8, CD19, CD56
- **Samples:** blood, saliva, hair (validated ELISA + chemiluminescent assays)
- **Analysis:** linear mixed-effects models with baseline adjustment

Amjad et al 2025 *PLOS ONE*

© Haavik Research 2025

36

16-week RCT
Immune results published!
BDNF
IL-6
TNF-alpha
INF-gamma
Serum and saliva cortisol


© Haavik Research 2025

Amjad et al 2025 *PLOS ONE*

37

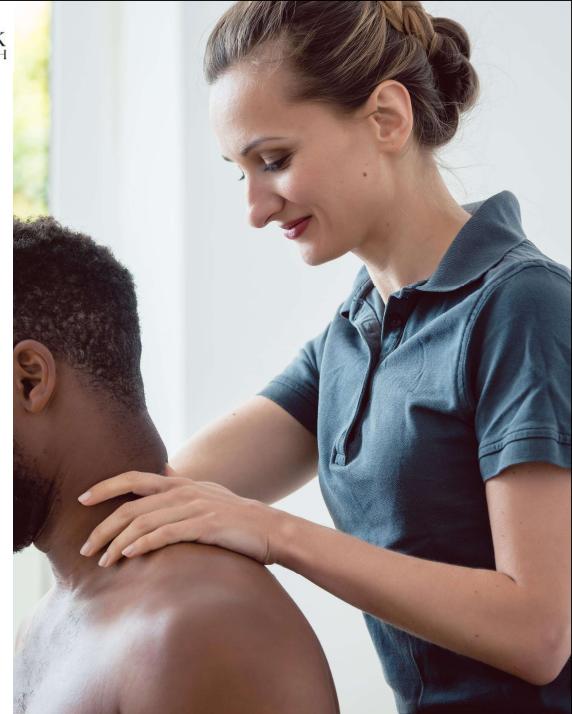
BDNF

- Brain-Derived Neurotrophic Factor (BDNF)
- Key supporter of neuroplasticity
- Helps neurons survive, grow, and adapt
- Linked to learning, memory, mood, and pain modulation

Amjad et al 2025 *PLOS ONE*

© Haavik Research 2025

38



BDNF changes with chiropractic care

- Primary outcome of the trial = blood BDNF at 12 weeks of chiropractic vs sham
- Higher BDNF in chiropractic group at 12 weeks $+150 \pm 60$ (95% CI: 40 to 270), $p = 0.009$
- Trend for higher BDNF still at 16 weeks
- Suggests enhanced neuroplastic activity in chiropractic group

Amjad et al 2025 PLOS ONE

© Haavik Research 2025

39

What does this mean to us chiropractors?

- Adds biological weight to the “brain-based” chiropractic model
- 12 weeks of care \rightarrow systemic neuroplasticity signal
- Potential relevance for:
 - Chronic pain
 - Stress resilience & healthy ageing
- Early evidence – effect sizes modest, needs replication
- Message: “*There is emerging evidence that regularly caring for the spine appears to also support the brain’s capacity to adapt and reorganize, not just reduce symptoms.*”

Amjad et al 2025 PLOS ONE

© Haavik Research 2025

40

Cortisol

(Stress System – Hair, Blood, Saliva)

- Cortisol = main stress hormone (HPA axis)
- Short term: helps manage acute stress & inflammation
- Long term: chronically high cortisol can be harmful
- Measured in:
 - Blood & saliva → acute/short-term levels
 - Hair → longer-term, chronic stress load

Amjad et al 2025 *PLOS ONE*

© Haavik Research 2025

41

Cortisol Changes with Chiropractic Care

- **12 weeks:**
 - Blood cortisol: ↑ in **both** groups (no between-group difference)
 - Salivary cortisol: **higher in chiropractic vs sham**
 - $+5 \pm 2, p = 0.045$
 - Hair cortisol: **non-significant trend down** in chiropractic group
- **16 weeks (4 weeks after care stopped):**
 - Blood cortisol **lower in chiropractic vs sham**
 - -9 ± 4 (95% CI: -17 to -1), $p = 0.024$

Amjad et al 2025 *PLOS ONE*

© Haavik Research 2025

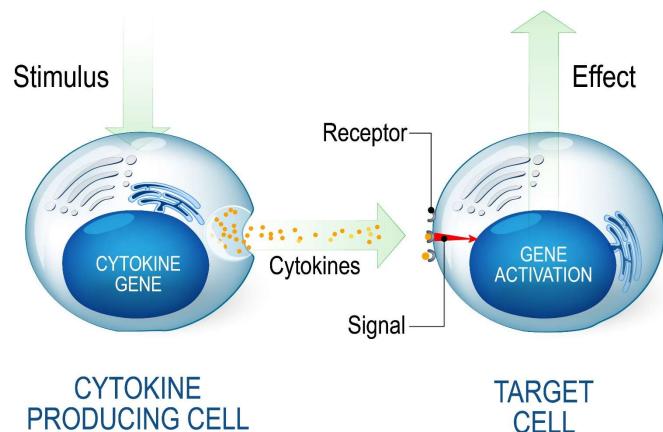
42

What does this mean for us chiropractors?

- Care may **engage** the stress system acutely (like exercise)
- Over time, chiropractic care may support **better regulation**
- Lower blood cortisol at 16 weeks = possible **reduced systemic stress load**
- Fits with a **neuroimmunomodulation / HPA axis** story
- *“There is emerging evidence that chiropractic care may help support healthier regulation of the stress system over time, not just symptom relief in the spine.”*

Amjad et al 2025 PLOS ONE

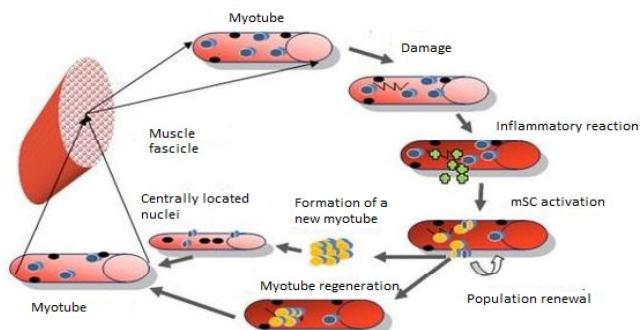
© Haavik Research 2025



43

Cytokines

- Proteins that are important in cell signaling.
- They are released by cells and affect the behavior of other cells.
- Cytokines include interferons, interleukins, lymphokines and other.
- Cytokines are produced by a broad range of cells, including immune cells: macrophages, B lymphocytes, T lymphocytes and mast cells.


Amjad et al 2025 PLOS ONE

© Haavik Research 2025

44

IL-6 (Inflammation & Myokine)

- Interleukin-6 (IL-6) = **dual role** cytokine
- In disease: often **pro-inflammatory** (infection, autoimmunity)
- In muscle: acts as a **myokine** released during exercise
- Can support:
 - **Local tissue repair & regeneration**
 - Regulation of **acute phase response** (e.g., CRP)

Amjad et al 2025 PLOS ONE

© Haavik Research 2025

45

IL-6 Changes with Chiropractic Care

- Higher IL-6 in chiropractic group at 12 weeks
 - $+1.0 \pm 0.3$ (95% CI: 0.5 to 1.5), $p < 0.001$
- Within chiropractic group:
 - IL-6 \uparrow at 12 and still \uparrow at 16 weeks
- No IL-6 change in sham at 12 weeks
- CRP did **NOT increase** in chiropractic group
- TNF- α actually **lower** in chiropractic group (see TNF slides)

Amjad et al 2025 PLOS ONE

© Haavik Research 2025

46

What does this mean for us chiropractors?

- HVLA adjustments may act like “**exercise**” for **deep paraspinal muscles**
- Repeated loading → **IL-6 myokine release** → muscle **repair & adaptation**
- No CRP rise + lower TNF- α → **not a harmful inflammatory spike**
- Supports model: adjusting dysfunctional segments = **mechanotherapy**
- Message: We may be **rehabilitating paraspinal tissues**, not just “putting bones back”

Amjad et al 2025 PLOS ONE


© Haavik Research 2025

47

CRP (Systemic Inflammation Marker)


- C-reactive protein (CRP)
- Produced by the liver in response to IL-6
- Widely used marker of **systemic inflammation**
- High CRP linked to:
 - Cardiometabolic risk
 - Chronic inflammatory states

Amjad et al 2025 PLOS ONE

© Haavik Research 2025

48

CRP Changes with Chiropractic Care

- No significant between-group differences at 12 or 16 weeks
- Within chiropractic:
 - Small increase at 12 weeks (borderline)
 - No sustained change at 16 weeks
- Within sham:
 - Similar small transient changes only
- Overall: no clear CRP signal favoring either group

Amjad et al 2025 *PLOS ONE*

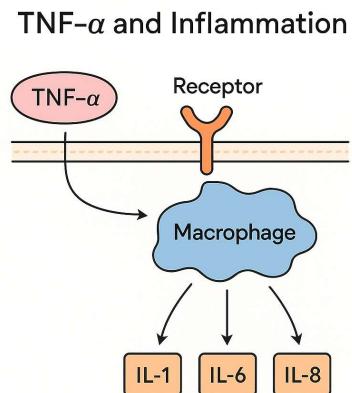
© Haavik Research 2025

49

What does this mean for us chiropractors?

- Reassuring: no evidence of **harmful systemic inflammation** from care
- Supports the idea that IL-6 increase is **local muscle / myokine**, not systemic flare
- Chiropractic care appears **safe at the biomarker level** in this cohort
- Important message for:
 - Interprofessional discussions
 - Reassuring **patients** about safety

Amjad et al 2025 *PLOS ONE*


© Haavik Research 2025

50

TNF-alpha (Key Pro-Inflammatory Cytokine)

- Tumor Necrosis Factor-alpha (TNF- α)
- Major **pro-inflammatory cytokine**
- Helps initiate and propagate **acute inflammation**
- Chronically high TNF- α linked to:
 - **Chronic pain**
 - Autoimmunity
 - Tissue damage & degeneration

Amjad et al 2025 PLOS ONE

© Haavik Research 2025

51

TNF- α Changes with Chiropractic Care

- Lower TNF- α in chiropractic vs sham at:
 - 12 weeks: -2 ± 1 ; $p = 0.023$
 - 16 weeks: -2 ± 1 ; $p = 0.028$
- Within-group:
 - Sham group: TNF- α **increased significantly** over time
 - Chiropractic group: only modest, non-significant increase
- Overall: sham group became **more inflamed**, chiropractic group **less so**

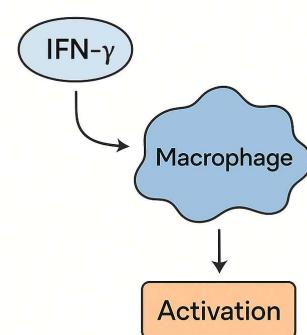
Amjad et al 2025 PLOS ONE

© Haavik Research 2025

52

What does this mean for us chiropractors?

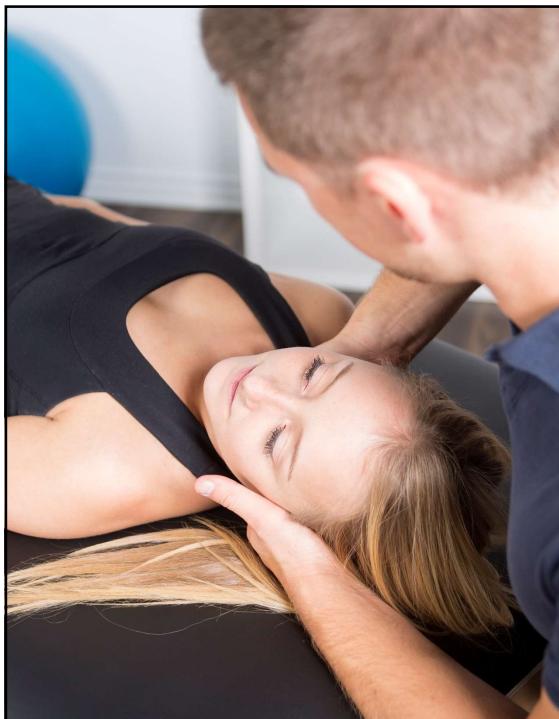
- 12 weeks of care → **favorable shift in a key inflammatory driver**
- Supports idea that chiropractic care may help **dampen chronic inflammation**
- Aligns with other work showing reduced TNF- α after manual therapies
- Potential relevance for:
 - **Chronic spinal pain**
 - **Multi-system inflammatory burden**
- *"There is preliminary evidence that regular chiropractic care may help support a more balanced inflammatory profile, including lower TNF-alpha."*


Amjad et al 2025 PLOS ONE

© Haavik Research 2025

53

INF- γ (gamma - Immune Activation & Defence)


- Interferon-gamma (IFN- γ)
- Produced by T cells, NK cells, macrophages
- Activates cells that **kill infected or damaged cells**
- Important for **host defense**, but chronically high = **immune over-activation**

Amjad et al 2025 PLOS ONE

© Haavik Research 2025

54

IFN- γ Changes with Chiropractic Care

- 12 weeks:
 - No significant between-group difference
 - Chiropractic group: **modest IFN- γ increase**
- 16 weeks:
 - IFN- γ **significantly higher in sham vs chiropractic**
 - $-22 \pm 7; p = 0.001$ (chiro < sham)
 - Driven by **big increase in sham group** between 12 and 16 weeks
- Chiropractic group did **not** show this late rise

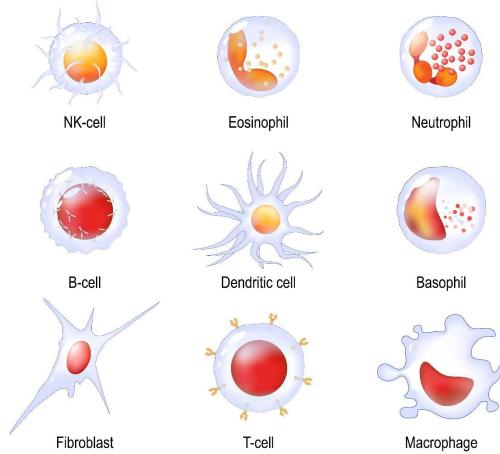
Amjad et al 2025 *PLOS ONE*

© Haavik Research 2025

55

What does this mean for us chiropractors?

- If we put this together with the TNF-alpha and cortisol findings, a pattern emerges:
- The sham group progressively shows **more signs of immune activation and inflammation** – higher TNF-alpha, higher IFN-gamma, and higher cortisol at 16 weeks.
- The chiropractic group looks more like a system that has been challenged in a controlled way and has then **settled into a more regulated state**.
- That's exactly what we'd hope for if chiropractic care is supporting neuro-immune balance rather than simply being a placebo for pain.
- We're not 'suppressing' the immune system – we may be helping it to stay responsive but not over-reactive."

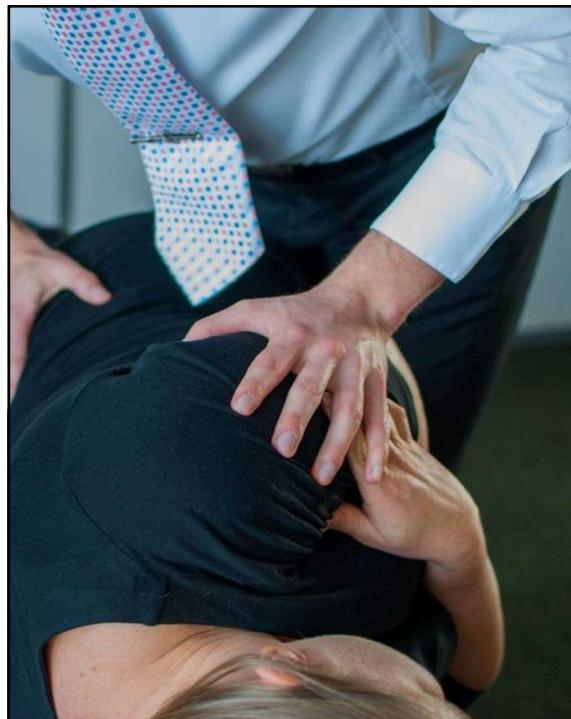

Amjad et al 2025 *PLOS ONE*

© Haavik Research 2025

56

Immune Cells:

- **CD19** – B-lymphocytes (antibody-producing cells)
- **CD4** – T-helper cells (coordinate immune responses)
- **CD8** – Cytotoxic T cells (kill infected/damaged cells)
- **CD56** – Natural killer (NK) cells (innate defence)



- CD4:CD8 ratio = indicator of immune system activation/balance

Amjad et al 2025 *PLOS ONE*

© Haavik Research 2025

57

Immune Cell Changes with Chiropractic Care

- **No significant between-group differences** (CD19, CD4, CD8, CD56) at 12 or 16 weeks
- **Within chiropractic group at 12 weeks:**
 - CD19 ↑ significantly
 - CD4 ↑ significantly
 - CD8 ↑ trend (non-significant)
 - CD56 ↑ (non-significant)
- Changes not sustained at 16 weeks

Amjad et al 2025 *PLOS ONE*

© Haavik Research 2025

58

What does this mean for us chiropractors?

- Suggests chiropractic care may **subtly tune immune cell activity**
- Patterns fit with:
 - Increased **immune competence**, not immune suppression
 - Balanced inflammatory picture alongside lower TNF- α & IFN- γ
- **Very early days** – hypothesis-generating, not definitive
- Message: another hint that chiropractic care interacts with the **neuro-immune network**

Amjad et al 2025 PLOS ONE

© Haavik Research 2025

59

Previous Research Also shown that HVLA thrusts alter:

medicine
medicina

Review

The Potential Mechanisms of High-Velocity, Low-Amplitude, Controlled Vertebral Thrusts on Neuroimmune Function: A Narrative Review

Haavik H^{1,2}, Imran Khan Niazi^{3,4,5}, Nitika Kumar^{1,2}, Imran Amjad^{1,2}, Jessa Dhar¹, and Kelly Hall^{1,2,6}

¹ Global Chiropractic Research, The Austral College of Chiropractic, Auckland 1000, New Zealand; ² School of Chiropractic & Osteopathy [SCHO], Victoria University Wellington [VUW], Wellington, New Zealand; ³ Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland, New Zealand; ⁴ Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark; ⁵ Department of Health and Wellbeing, University of Derby, Derby DE22 2JZ, United Kingdom; ⁶ International Health, Palau

Received: 10 November 2021; Accepted: 12 March 2022; Published: 15 May 2022

Academic Editor: Michael W. West

Keywords: high-velocity, low-amplitude thrust; HVLA; chiropractic; spinal manipulation; central nervous system; neuroimmune function; cytokines; neuroinflammation

Copyright: © 2022 Haavik, Khan Niazi, Kumar, Amjad, Dhar and Hall. This article is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction is allowed, and given to the original author(s) and to others in the same category, without prior permission or charge, for educational, research and not-for-profit purposes, with a link to this article. Any commercial use of this work is prohibited. The full terms of the Creative Commons license are available at <https://creativecommons.org/licenses/by/4.0/>.

Medicina 2022, 58, 536. <https://doi.org/10.3390/medicina58030536>

Single thrust session studies mainly:

Neuropeptides

- Neurotensin ↑
- Oxytocin ↑
- Substance P ↑ (short-term)

These molecules influence:

- Inflammation
- Stress responses
- Neuroendocrine regulation
- Pain modulation

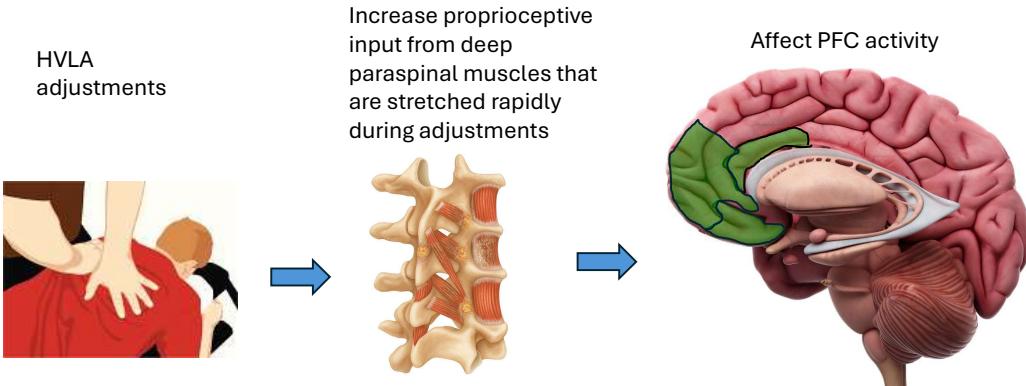
Cytokines & Inflammatory Markers

- Pro-inflammatory cytokines ↓
- IL-1 β ↓
- TNF- α ↓

Anti-inflammatory cytokines ↑

- IL-2 ↑
- IL-10 ↑ (in some studies)

Endocrine Markers

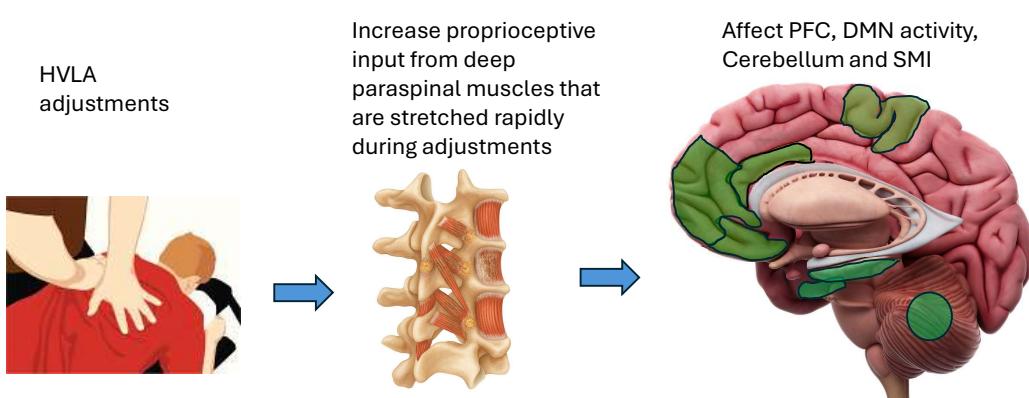

- Cortisol responses are inconsistent, with some studies showing changes and others not.

Haavik et al. 2021. Medicina 2021, 57, 536.

© Haavik Research 2025

60

Mechanisms from 2021 Review



PFC regulates ANS, HPA axis, Immune system, Stress response, Emotions and pain modulation

© Haavik Research 2025

61

Mechanisms from 2025 RCT

PFC, DMN, Cerebellum and SMI impacts and regulates ANS, HPA axis, Immune system, Stress response, Emotions and pain modulation

© Haavik Research 2025

62

What you CANNOT say based on current science

- Cannot claim chiropractic care **treats, cures, or prevents** any inflammatory, immune, or neurological disease
- Cannot claim chiropractic care **directly boosts immunity**
- Cannot claim biomarker changes = **clinical outcomes** yet
- Cannot generalize beyond this **specific population** (subclinical spinal pain)
- Cannot infer long-term effects beyond **16 weeks**
- Cannot claim effects are large — current results show **modest effect sizes**
- Single RCT → requires **replication** before making broad clinical claims

© Haavik Research 2025

63

Take Home Messages from this latest publication

- First-ever **longer-term RCT** showing neuroplasticity + immune biomarker changes with chiropractic care
- **BDNF increased** → suggests enhanced neuroplastic activity
- **IL-6 increased** without CRP rise → consistent with **myokine / muscle repair response**, not harmful inflammation
- **TNF- α lower** in chiropractic group → potentially reduced systemic inflammatory load
- **Cortisol better regulated** over time (lower at 16 weeks)
- Sham group showed **worsening inflammatory/immune profile** (\uparrow TNF- α , \uparrow IFN- γ , \uparrow cortisol)
- No evidence of biomarker **harm** from chiropractic care
- Supports the **contemporary brain-immune-stress model** of chiropractic care

© Haavik Research 2025

64

What we CAN claim based on this research

- Chiropractic care **modulated** key biomarkers (BDNF, IL-6, TNF- α , cortisol)
- Patterns suggest **neuroplastic, stress-regulatory, and immune-balancing effects**
- Changes occurred **over 12 weeks**, not just acutely
- Biomarker shifts were generally **favorable** (\uparrow BDNF, \downarrow TNF- α , \downarrow cortisol at follow-up)
- No evidence of **increased systemic inflammation or tissue damage**
- Findings **support**, but do not yet *prove*, broader health benefits
- More research needed → larger sample, longer follow-up, integration with outcomes
- Safe, evidence-aligned message:
“Chiropractic care may influence neuroplasticity, stress physiology, and immune function.”

© Haavik Research 2025

65

What is yet to come from this RCT

- Patient reported outcome measures (quality of life, stress, emotions)
- Sleep outcomes
- Executive functions outcomes
- Tripple Brain Network changes

© Haavik Research 2025

66

Questions?

